

Hydropower Plants: Generating and Pumping Units Solved Problems: Series 1

1 ENERGY LOSS CALCULATION

Consider a piping system from a dam to a hydropower plant (see Figure 1) including fittings and valves. Answer to the questions, using the values provided in Figure 1 and the information from appendices A and B. The gravity acceleration and water kinematic viscosity are $g = 9.81 \text{ ms}^{-2}$ and $v_{water} = 10^{-6} \text{ m}^2 \text{ s}^{-1}$.

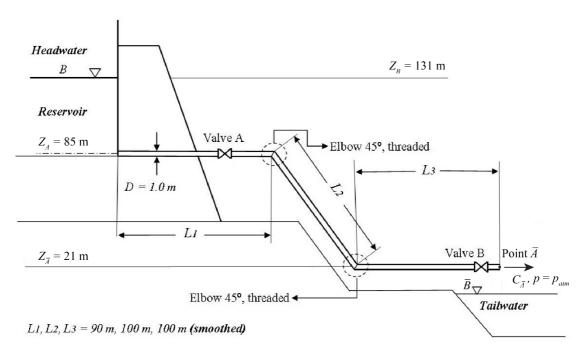


Figure 1: Dam piping system

- 1) Derive a relation between velocity $C_{\overline{A}}$ and head $Z_B Z_{\overline{A}}$ based on energy balance, by i) neglecting and ii) considering energy losses $gH_{rB+\overline{A}}$:
- 2) Calculate the velocity $C_{\overline{A}_without_Loss}$ at the point \overline{A} and the discharge Q by assuming all the specific energy losses are negligible.
- 3) Calculate the Reynolds number neglecting the specific energy losses.
- 4) The actual discharge Q is 13.66 m³ s⁻¹. Compute the singular and distributed specific energy losses, $gH_{rB \div \overline{A}_\text{singular}}$ and $gH_{rB \div \overline{A}_\text{distributed}}$. Use Figure A.1 to find the regular specific energy losses local coefficient λ . Consider the surface of the piping system as

- perfectly smooth, and assume the valves A and B as gate valves, respectively fully open and $\frac{1}{2}$ closed.
- 5) If the penstock diameter is increased to 1.2 m, compute the new regular and singular specific energy losses.
- 6) This time, compute the regular and singular specific energy losses if the penstock diameter is reduced to 0.8 m.

2 GENERAL HYDRAULIC POWER PLANT

2.1 Basic calculation for a hydraulic power plant

In Figure 2, the sketch of a hydraulic power plant located in Brazil is shown. The elevations of the headwater and tailwater reservoirs are $Z_B = 304$ m and $Z_{\bar{B}} = 252$ m, respectively. The rated discharge is Q = 539 m³ s⁻¹ and the global efficiency η is 0.91. If necessary, use the following values of gravity acceleration and water density:

$$g = 9.81 \text{ m s}^{-2}, \rho = 1'000 \text{ kg m}^{-3}$$

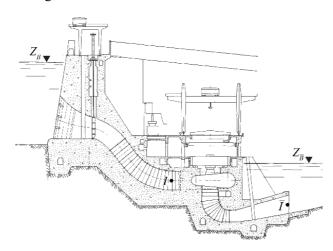


Figure 2 Sketch of the hydraulic power plant and the detail of the turbine

- 7) Express the potential specific energy of the installation by Z_B , $Z_{\overline{B}}$, and g.
- 8) Taking into account the specific energy losses gH_{rB+I} between B and I, and $gH_{r\bar{I}+\bar{B}}$, between \bar{I} and \bar{B} ($gH_r > 0$), express the available specific energy E by g, Z_B , $Z_{\bar{B}}$, gH_{rB+I} and $gH_{r\bar{I}+\bar{B}}$.
- 9) Calculate the water velocity in the penstock. Use the value of the penstock diameter $D_{penstock} = 7 \text{ m}$.
- 10) Calculate the Reynolds number in the penstock using the kinetic viscosity $v = 10^{-6}$ m² s⁻¹.

2.2 Practical study for the specific energy loss

Here, the specific energy loss calculation is applied to the practical case for the hydraulic power station detailed in *Section 2.1*.

26.09.2024 EPFL/STI Page 2/4

11) Knowing that the regular specific energy loss in a penstock can be expressed as:

$$gH_{r_{1+2}} = K_r \frac{C^2}{2} = \lambda \frac{L_{1+2}}{D} \frac{C^2}{2}$$
 (1)

Express the distributed specific energy loss gH_r as a function of the local coefficient of the distributed specific losses λ , the length of the penstock $L_{penstock}$, the diameter of the penstock $D_{penstock}$ and the discharge Q.

Then, reflect on the importance of the penstock diameter and explain why it is a key parameter to reduce the specific energy loss under a constant discharge.

12) The local coefficient of the distributed specific energy losses λ is dependent on the Reynolds number Re and can be calculated by the Churchill formula as follows:

$$\lambda = 8 \left[\left(\frac{8}{\text{Re}} \right)^{12} + \frac{1}{(A+B)^{\frac{3}{2}}} \right]^{\frac{1}{12}}$$
with $A = \begin{bmatrix} 2.457 \cdot \ln \frac{1}{\left(\frac{7}{\text{Re}}\right)^{0.9} + 0.27 \frac{k_s}{D_{newstock}}} \end{bmatrix}^{16}$ and $B = \left(\frac{37530}{\text{Re}} \right)^{16}$ (2)

Where k_s is the equivalent sand roughness, whose value which depends on the penstock material. For instance, $k_s = 10^{-6}$ for stainless steel and $k_s = 3 \times 10^{-3}$ for rough concrete.

Calculate the local coefficient values λ_{steel} and $\lambda_{concrete}$ when using i) stainless steel and ii) rough concrete as the penstock material. Then, calculate the distributed specific energy loss in the penstock for both cases. Use the penstock length $L_{penstock} = 100$ m.

- 13) Assuming that the total specific energy losses of the singular specific energy losses (intake, elbow, etc...) and the specific energy losses $gH_{r\bar{t}+\bar{B}}$ are equivalent to 1% of the gross head, calculate the available specific energy E for both cases.
- 14) For both cases, calculate the available power *P* and compare the difference between both cases.
- 15) In this power plant, the grid frequency is $f_{grid} = 60$ Hz and the number of poles is $z_p = 88$. Deduce the angular rotational frequency of the runner ω .

26.09.2024 EPFL/STI Page 3/4

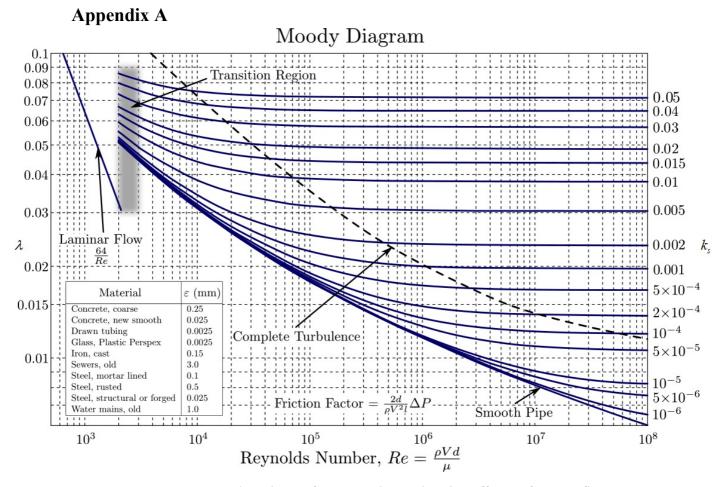


Figure A.1: Distributed specific energy losses local coefficient for pipe flow

Appendix B

Table B.1: Specific energy loss coefficients of bends, elbows, fittings, etc.

Fitting	k [-]
Sharp intake connection	0.5
Globe valve, fully open	10.0
Angle valve, fully open	2.0
Gate valve, fully open	0.15
Gate valve, 1/2 closed	2.10
Swing check valve, flow	2.0
Elbow 90° – flanged	0.3
Elbow 90° – threaded	1.50
Long radius 90°, flanged	0.20
Long radius 90°, threaded	0.70
Elbow 45°, threaded	0.40

26.09.2024 EPFL/STI Page 4/4